ET 6018: FLUID MECHANICS, 2019

Assignment 1

Q1. A pipe $A B$ branches into two pipes C and D as shown in figure. The pipe has diameter of 0.45 m at $\mathrm{A}, 0.3 \mathrm{~m}$ at $\mathrm{B}, 0.2 \mathrm{~m}$ at C and 0.15 m at D . Find the discharge at A , if the velocity of water at A is $2 \mathrm{~m} / \mathrm{s}$. Also find out the velocities at B and D, if velocity at C is $4 \mathrm{~m} / \mathrm{s}$.

Q2. A stream function is given by the expression: $\psi=2 x^{2}-y^{3}$. Find the components of the velocity, as well as the resultant velocity at a point $P(3,1)$.

Assignment 2

Q1. Calculate the distance h for mercury in the capillary glass tube of 3.5 mm diameter. The angle of contact is equal to 130°. The surface tension of mercury in contact with air is $0.51 \mathrm{~N} / \mathrm{m}$.

Q2. The capillary depression of mercury in the 4 mm diameter capillary glass tube is 2.9 mm . Find the angle of contact, θ. The surface tension of mercury in contact with air is $0.52 \mathrm{~N} / \mathrm{m}$.

[Hint: Find θ_{1} using the relation, surface tension force $=$ weight of mercury column in the tube as we did before in the class. Then you can find the angle of contact θ by subtracting the angle θ_{1} from 180°.]

Assignment 3

Q1. Find an expression for the pressure at a height Z from sea level for static air when the compression of air is assumed isothermal. The pressure at sea level is p_{0}.

Q2. Find the difference of pressure between the tanks A and B.

